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Preface

This book provides an overview and synthesis of models and techniques for analyzing
social and economic networks. This is meant to serve both as a resource for researchers
and a text on the subject for graduate students. The focus is primarily on the modeling
of and theory behind the structure, formation, and implications of social networks. Sta-
tistical and experimental analyses of networks are also discussed throughout, especially
when they help set the stage for issues to be investigated. The main emphasis is on
providing a foundation for analyzing and understanding social and economic networks.

The organization of the book can be split into four main parts. The first part intro-
duces network analysis and provides some background on what is known about various
networks, how they are measured and useful ways of representing them. The second
part presents some of the models that have been used to understand how networks
are formed. This draws from two very different perspectives: random graph models,
where there is some stochastic process which governs the development of the links in
a network, as well as strategic models of network formation, where the development
of links is based on costs and benefits and game theoretic techniques are used. These
approaches to modeling provide different insights into networks, how they are formed,
and why the exhibit certain characteristics. The third main part of the book looks
at the implications of network structure. Much of the interest in networks has to do
with the fact that their structure is an important determinant of how societies and
economies function. This part examines how network models are used to predict the
spread of disease, the dissemination of information, the choice of behavior by people,
and how markets function. The final part of the book covers empirical analyses of
networks and methods of identifying social interaction.

A specific outline of the grouping by chapters is as follows:
e Part I: Some Background and the Fundamentals of Network Analysis
— Introduction (Chapter 1)

11
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— Representing and measuring networks (Chapter 2)

— Empirical Background on Social and Economic Networks (Chapter 3)
e Part II: Models of Network Formation

— Modeling network formation through random graph models, (Chapters 4
and 5),

— Modeling network formation through strategic models, (Chapter 6),
e Part III: Implications of Network Structure

— How information, diseases, and behaviors propagate through networks, (Chap-
ters 7, 8, and 9),

— How network structure impacts behavior (Chapter 9),

— Analysis of some networked markets (Chapter 10),
e Part IV: Methods, Tools, and Empirical Analyses

— Game theoretic foundations of network formation, (Chapter 11)

— The allocation of productive value and utility through a network (Chapter
12).

— Observing and Measuring Social Interaction through Data and Experiments

and Community Structures (Chapter 13).

Although this represents a categorization of the chapters by subject, the relationship
between the chapters is not entirely linear. I have intermingled some subjects to tie
different approaches together, and the chapters will refer to each other. Also, there is a
progression in the book with some of the more technically demanding chapters coming
later, as well as those that draw on concepts from earlier chapters.

The modeling of networks requires some mathematical background, but I have made
the book as self-contained as possible. I do not presume any knowledge beyond some
familiarity with linear algebra (vectors and matrices), calculus, and some familiarity
with probability and statistics. The discussions employing graph theory and game
theory are self-contained and there are appendices with introductions to some of the

topics, including various useful results from graph theory, math, game theory and
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probability theory. There are some sections and exercises that are more mathematical
in nature, and those are marked with an *.

There are several reasons for writing this book. First, and foremost, networks of
relationships play central roles in a wide variety of social, economic, and political in-
teractions. For example, many, if not most, markets function not as centralized and
anonymous institutions, but rather involve a variety of bilateral exchanges or contracts.
As a case in point, most jobs are filled by people who were informed about the job
through a social contact. This fact has consequences for patterns of employment, in-
equality in wages across groups, and social mobility. As such, understanding social
network structure and how it influences human interaction is not only important to
science (and the social sciences in particular), it is essential. Second, the topic is timely
for two reasons. One is that recent technological advances have made information net-
works much more prominent (e.g., the world wide web), and people are more conscious
of the role of networks in their lives. Another is that the formal modeling of networks
has now reached a maturity across fields that permits a book-length treatment devoted
to it. Finally, the inter- and multi-disciplinary nature of research on networks means
that knowledge is quite diffuse, and there is much to be gained by collecting aspects
of it from different fields in a unified treatment. Substantial research on networks has
been conducted in sociology, economics, physics, mathematics, and computer science,
and these disciplines take different approaches and ask varied questions.! This makes it
important to bridge the literatures and produce a text that collects and synthesizes dif-
ferent modeling approaches and techniques and makes them all available to researchers
from any discipline who are interested in the study of networks.

At the end of each chapter in this book you will find “exercises.” The exercises
here are meant to serve several purposes. They serve the usual purpose of problems in
a textbook: that is, to help ensure that students have a chance to work with concepts
and more fully familiarize themselves with the ideas presented in a given chapter; and
thus can be made part of a course material. And, of course, the interested researcher
can work the exercises as well. But beyond this, the exercises also introduce new

material. I have used the exercises to introduce new concepts and material that is not

1Social network analysis is a central and well-developed area of study in sociology, with societies,
journals, conferences and decades of research devoted to it. With occasional overlap, a literature on
graph theory has matured in mathematics over the same period. While the literature on networks
has been thriving in sociology for over five decades, it has emerged in economics primarily over the
last ten to fifteen years. Its explosion in computer science and statistical physics has been rapid and
mostly during the past decade.
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covered in the text. These are meant to be closely related to material in the text, but
complementary to it. These are often ideas that I feel are important enough to include
here, but for one reason or another did not fit easily with the main thread of a chapter
without making it longer than I desired or taking us on a tangent. This means that
researchers consulting this book as a reference should not ignore the exercises, and may

in many instances actually find what they are looking for in exercises.?

As with any such undertaking, there are many acknowledgements due, and they
do not adequately represent the scope and depth of the help received. This project
would not have been possible without financial support from the Center for Advanced
Studies in the Behavioral Sciences, the Guggenheim Foundation, and the Lee Center
for Advanced Networking, as well as the NSF under grants SES-0316493 and SES-
0647867. I began this project while I was at the California Institute of Technology and
concluded it while at Stanford University, and their support is gratefully acknowledged.
In terms of the content of this monograph, I have been deeply influenced by a number
of collaborators. First and foremost, my initial interest in this subject arose through
conversations and subsequent research with Asher Wolinsky. I have continued to learn
about networks and enjoy the interaction with a group of co-authors (in chronological
order): Alison Watts, Bhaskar Dutta, Anne van den Nouweland, Toni Calvé-Armengol,
Francis Bloch, Gary Charness, Alan Kirman, Jernej Copic, Brian Rogers, Dunia Lopez-
Pintado, Leeat Yariv, Andrea Galeotti, Sanjeev Goyal, Fernando Vega-Redondo, Ben
Golub, Sergio Currarini, and Paolo Pin. Their collaboration and friendship is greatly
appreciated. Although not co-authors on network-related projects, Salvador Barbera,
Darrell Duffie and Hugo Sonnenschein have been great mentors (and friends) and pro-
foundly shaped my approach and writing. I thank Lada Adamic, Marika Cabral, Toni
Calvé-Armengol, Jon Eguia, Marcel Fafchamps, Ben Golub, Carlos Lever, Laurent
Mathevet, and Tim Sullivan for extensive comments on earlier drafts. For all of the
emotional support and enthusiasm needed to keep such a project afloat, I owe profound
thanks to my wife, Sara, my daughters, Emily and Lisa, and to my parents. Special
thanks are due to Sara, whose encouragement through the persistent asking of the
question “Did you get to work on your book today?” always kept me pointed in the
right direction, and whose juggling of many tasks allowed me to answer “yes” more

often than “no.”

2This is obviously not the first text to do this, as one sees important results appearing as exercises
in many mathematical texts. The usefulness of this technique was made obvious to me through the

superb text on axiomatic social choice by Hervé Moulin [471].
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Chapter 1
Introduction

This chapter provides an introduction to the analysis of networks through the presen-
tation of several examples of research. This provides not only some idea of why the
subject is interesting, but also of the range of networks studied, approaches taken and

methods used.

1.1 Why Model Networks?

Social networks permeate our social and economic lives. They play a central role in
the transmission of information about job opportunities, and are critical to the trade
of many goods and services. They are the basis of the provision of mutual insurance in
developing countries. Social networks are also important in determining how diseases
spread, which products we buy, which languages we speak, how we vote, as well as
whether or not we decide to become criminals, how much education we obtain, and our
likelihood of succeeding professionally. The countless ways in which network structures
affect our well-being make it critical to understand: (i) how social network structures
impact behavior, and (ii) which network structures are likely to emerge in a society.
The purpose of this monograph is to provide a framework for an analysis of social
networks, with an eye on these two questions.

As the modeling of networks comes from varied fields and employs a variety of
different techniques, before jumping into formal definitions and models, it is useful to
start with a few examples that help give some impression of what social networks are
and how they have been modeled. The following examples illustrate widely different

perspectives, issues, and approaches; previewing some of the breadth of the range of
17
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18 CHAPTER 1. INTRODUCTION

topics to follow.

1.2 A Set of Examples:

The first example is a detailed look at the role of social networks in the rise of the
Medici.

1.2.1 Florentine Marriages

The Medici have been called the “godfathers of the Renaissance.” Their accumulation
of power in the early fifteenth century in Florence, was orchestrated by Cosimo de’
Medici despite the fact that his family started with less wealth and political clout than
other families in the oligarchy that ruled Florence at the time. Cosimo consolidated
political and economic power by leveraging the central position of the Medici in net-
works of family inter-marriages, economic relationships, and political patronage. His
understanding of and fortuitous position in these social networks enabled him to build
and control an early forerunner to a political party, while other important families of
the time floundered in response.’

Padgett and Ansell [493] provide powerful evidence for this by documenting the
network of marriages between some key families in Florence in the 1430’s. The following
figure provides the links between the key families in Florence at that time, where a

link represents a marriage between members of the two linked families.?

As mentioned above, during this time period the Medici (with Cosimo de’ Medici
playing the key role) rose in power and largely consolidated control of the business
and politics of Florence. Previously Florence had been ruled by an oligarchy of elite
families. If one examines wealth and political clout, however, the Medici did not stand
out at this point and so one has to look at the structure of social relationships to

understand why it was the Medici who rose in power. For instance, the Strozzi had

ISee Kent [369] and Padgett and Ansell [493] for detailed analyses, as well as more discussion of

this example.
2The data here were originally collected by Kent [369], but were first coded by Padgett and Ansell

[493], who discuss the network relationships in more detail. The analysis provided here is just a teaser
that offers a glimpse of the importance of the network structure. The interested reader should consult

Padgett and Ansell [493] for a much richer analysis.
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Figure 1.1: 15th Century Florentine Marriges Data from Padgett and Ansell [493]
(drawn using UCINET)

both greater wealth and more seats in the local legislature, and yet the Medici rose to
eclipse them. The key to understanding this, as Padgett and Ansell [493] detail, can
be seen in the network structure.

If we do a rough calculation of importance in the network, simply by counting how
many families a given family is linked to through marriages, then the Medici do come
out on top. However, they only edge out the next highest families, the Strozzi and the
Guadagni, by a ratio of 3 to 2. While this is suggestive, it is not so dramatic as to be
telling. We need to look a bit closer at the network structure to get a better handle on
a key to the success of the Medici. In particular, the following measure of betweenness
is illuminating.

Let P(ij) denote the number of shortest paths connecting family ¢ to family j. ?
Let Py(ij) denote the number of these paths that family k lies on. For instance, the
shortest path between the Barbadori and Guadagni has three links in it. There are

3Formal definitions of path and some other terms used in this chapter appear in Chapter 2. The
ideas should generally be clear, but the unsure reader can skip forward if they wish. Paths represent

the obvious thing: a series of links connecting one node to another.
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two such paths: Barbadori - Medici - Albizzi - Guadagni, and Barbadori - Medici -
Tournabouni - Guadagni. If we set i = Barbadori and j = Guadagni, then P(ij) = 2.
As the Medici lie on both paths, P, (ij) = 2 when we set k = Medici, and i = Barbadori
and j = Guadagni. In contrast this number is 0 if we set k = Strozzi, and is 1 if we
set k = Albizzi. Thus, in a sense, the Medici are the key family in connecting the
Barbadori to the Guadagni.

In order to get a fuller feel for how central a family is, we can look at an average
of this betweenness calculation. We can ask for each pair of other families, what
fraction of the total number of shortest paths between the two the given family lies
on. This would be 1 if we are looking at the fraction of the shortest paths the Medici
lie on between the Barbadori and Guadagni, and 1/2 if we examine the corresponding
fraction that the Albizzi lie on. Averaging across all pairs of other families gives us a
sort of betweenness or power measure (due to Freeman [239]) for a given family. In

particular, we can calculate

Py(ij)/P(ij)
2 = 1)(n—2)/2 (L.1)

iji£g,k¢{i,5}
for each family k£, where we set % = 0 if there are no paths connecting ¢ and
j, and the denominator captures that a given family could lie on paths between up
to (n — 1)(n — 2)/2 pairs of other families. This measure of betweenness for the
Medici is .522. That means that if we look at all the shortest paths between various
families (other than the Medici) in this network, the Medici lie on over half of them! In
contrast, a similar calculation for the Strozzi comes out at .103, or just over ten percent.
The second highest family in terms of betweenness after the Medici is the Guadagni
with a betweenness of .255. To the extent that marriage relationships were keys to
communicating information, brokering business deals, and reaching political decisions,
the Medici were much better positioned than other families, at least according to this
notion of betweenness.! While aided by circumstance (for instance, fiscal problems
resulting from wars), it was the Medici and not some other family that ended up
consolidating power. As Padgett and Ansell [493] put it, “Medician political control was

produced by network disjunctures within the elite, which the Medici alone spanned.”

4The calculations here are conducted on a subset of key families (a data set from Wasserman and
Faust [617]), rather than the entire data set which consists of hundreds of families. As such, the
numbers differ slightly from those reported in footnote 31 of Padgett and Ansell [493]. Padgett and
Ansell also find similar differences in centrality between the Medici and other families in terms of a

network of business ties.
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This analysis shows that network structure can provide important insights beyond
those found in other political and economic characteristics. The example also illustrates
that the network structure is important beyond a simple count of how many social ties
each member has, and suggests that different measures of betweenness or centrality
will capture different aspects of network structure.

This example also suggests a series of other questions that we will be addressing
throughout this book. For instance, was it simply by chance that the Medici came
to have such a special position in the network or was it by choice and careful plan-
ning? As Padgett and Ansell [493] say (footnote 13), “The modern reader may need
reminding that all of the elite marriages recorded here were arranged by patriarchs (or
their equivalents) in the two families. Intra-elite marriages were conceived of partially
in political alliance terms.” With this perspective in mind we then might ask why
other families did not form more ties, or try to circumvent the central position of the
Medici. We could also ask whether the resulting network was optimal from a variety
of perspectives: was it optimal from the Medici’s perspective, was it optimal from the
oligarchs’ perspective, and was it optimal for the functioning of local politics and the
economy of 15th century Florence? These types of questions are ones that we can
begin to answer through explicit models of the costs and benefits of networks, as well

as models of how networks form.

1.2.2 Friendships Among High School Students

The next example comes from the The National Longitudinal Adolescent Health Data
Set, known as “Add Health.”® These data provide detailed social network information
for over ninety thousand high school students from U.S. high schools interviewed during
the mid 1990s; together with various data on the students’ socio-economic background,
behaviors and opinions. The data provide a number of insights and illustrate some
features of networks that are discussed in more detail in the coming chapters.

Figure 1.2 shows a network of romantic relationships as found through surveys of

5 Add Health is a program project designed by J. Richard Udry, Peter S. Bearman, and Kathleen
Mullan Harris, and funded by a grant P01-HD31921 from the National Institute of Child Health and
Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is
due Ronald R. Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested
in obtaining data files from Add Health should contact Add Health, Carolina Population Center,
123 W. Franklin Street, Chapel Hill, NC 27516-2524 (addhealth@unc.edu). The network data that I
present in this example were extracted by James Moody from the Add Health data set.
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students in one of the high schools in the study. The students were asked to list the

romantic liaisons that they had during the six months previous to the survey.
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Figure 1.2: A Figure from Bearman, Moody and Stovel [47] based the Add Health Data
Set. A Link Denotes a Romantic Relationship, and the Numbers by Some Components
Indicate How Many Such Components Appear.

There are several things to remark about Figure 1.2. The network is nearly a
bipartite network, meaning that the nodes can be divide into two groups, male and
female, so that links only lie between groups (with a few exceptions). Despite its
nearly bipartite nature, the distribution of the degrees of the nodes (number of links
each node has) turns out to closely match a network where links are formed uniformly
at random (for details on this see Section 3.2.3), and we see a number of features of

” where over one

large random networks. For example, we see a “giant component,
hundred of the students are connected via sequences of links in the network. The next
largest component (maximal set of students who are each linked to one another via
sequences of links) only has ten students in it. This component structure has important
implications for the diffusion of disease, information, and behaviors, as discussed in
detail in Chapters 7, 8, and 9. Next, note that the network is quite “tree-like” in that

there are very few loops or cycles in the network. There is a very large cycle visible in
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the giant component, and then a couple of smaller cycles present, but very few overall.
The absence of many cycles means that as one walks along the links of the network
until hitting a dead-end, most of the nodes that are met are new ones that have not
been encountered before. This is important in navigation of networks. This feature
is found in many random networks in cases where there are enough links so that a
giant component is present, but there are also few enough links so that the network is
not fully connected. This contrasts with what we see in the denser friendship network
pictured in Figure 1.3, where there are many cycles, and a shorter distance between
nodes.

The network pictured in Figure 1.3 is also from the Add Health data set and con-
nects a population of high school students.® Here the nodes are coded by their race
rather than sex, and the relationships are friendships rather than romantic relation-
ships. This is a much denser network than the romance network, and also exhibits
some other features of interest.

" a term

A strong feature present in Figure 1.3 is what is known as “homophily,’
due to Lazarsfeld and Merton [406]. That is, there is a bias in friendships towards
similar individuals; in this case the homophily concerns the race of the individuals.
This bias is above what one would expect due to the makeup of the population. In this
school, 52 percent of the students are white and yet 86 percent of whites’ friendships
are with other whites. Similarly, 38 percent of the students are black and yet 85
percent of blacks’ friendships are with other blacks. Hispanics are more integrated in
this school, comprising 5 percent of the population, but having only 2 percent of their
friendships with Hispanics.” If friendships were formed without race being a factor,
then whites would have roughly 52 percent of their friendships with other whites rather
than 85 percent.® This bias is referred to as “inbreeding homophily” and has strong

consequences. As we can see in the figure, it means that the students end up somewhat

6A link indicates that at least one of the two students named the other as a friend in the survey.
Not all friendships were reported by both students. For more detailed discussion of these particular

data see Curarrini, Jackson and Pin [173].
"The Hispanics in this school are exceptional compared to what is generally observed in the larger

data set of 84 high schools. Most racial groups (including Hispanics in many of the other schools) tend
to have a greater percentage of own-race friendships than the percentage their race in the population,

regardless of their fraction of the population. See Currarini, Jackson and Pin [173] for details.
8There are a variety of possible reasons for the patterns observed, as it could be that race is

correlated with other factors that affect friendship opportunities. For more discussion of this with
respect to these data see Moody [460] and Currarini, Jackson and Pin [173]. The main point here is
that the resulting network has clear patterns and those will have consequences.
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Figure 1.3: “Add Health” Friendships among High School Students Coded by Race:
Hispanic=Black, White=White, Black=Grey, Asian and Other = Light Grey.

segregated by race, and this will impact the spread of information, learning, and the
speed with which things propagate through the network; themes that are explored in

detail in what follows.

1.2.3 Random Graphs and Networks

The examples of Florentine marriages and high school friendships suggest the need
for models of how and why networks form as they do. The last two examples in this
chapter illustrate two complementary approaches to modeling network formation.

The next example of network analysis comes from the graph-theoretic branch of
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mathematics, and has recently been extended in various directions by the computer
science, statistical physics, and economics literatures (as will be examined in some of
the following chapters). This is perhaps the most basic model of network formation that
one could imagine: it simply supposes that a completely random process is responsible
for the formation of the links in a network. The properties of such random networks
provide some insight into the properties that some social and economic networks have.
Some of the properties that have been extensively studied are how links are distributed
across different nodes, how connected the network is in terms of being able to find paths
from one node to another, what the average and maximal path lengths are, how many
isolated nodes there are, and so forth. Such random networks will serve as a very useful
benchmark against which we can contrast observed networks; as such comparisons help
identify which elements of social structure are not the result of mere randomness, but

must be traced to other factors.

Erdos and Rényi [213], [214], [215] provided seminal studies of purely random net-
works.? To describe one of the key models, fix a set of n nodes. Each link is formed
with a given probability p, and the formation is independent across links.!® Let us
examine this model in some detail, as it has an intuitive structure and has been a

springboard for many recent models.

Consider a set of nodes N = {1,...,n}, and let a link between any two nodes, i
and j, be formed with probability p, where 0 < p < 1. The formation of links is inde-
pendent. This is a binomial model of link formation, which gives rise to a manageable
set of calculations regarding the resulting network structure.!! For instance, if n = 3,
then a complete network forms with probability p?, any given network with two links
(there are three such networks) forms with probability p*(1 — p), any given network
with one link forms with probability p(1 — p)?, and the empty network that has no
links forms with probability (1 — p)3. More generally, any given network that has m

9See also Solomonoff and Rapoport [578] and Rapoport [526], [527], [528], for related predecessors.

0Two closely related models that they explored are as follows. In one of the alternative models, a
precise number M of links is formed out of the n(n — 1)/2 possible links. Each different graph with
M links has an equal probability of being selected. In the second alternative model, the set of all
possible networks on the n nodes is considered and one is randomly picked uniformly at random. This
can also be done according to some other probability distribution. While these models are clearly
different, they turn out to have many properties in common. Note that the last model nests the other
two (and any other random graph model on a fixed set of nodes) if one chooses the right probability

distributions over all networks.
!1Gee Section 4.5.4 for more background on the binomial distribution.
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links on n nodes has a probability of

p"(1—p)

B (1.2)
of forming under this process.!?

We can calculate some statistics that describe the network. For instance, we can find
the degree distribution fairly easily. The degree of a node is the number of links that
the node has. The degree distribution of a random network describes the probability
that any given node will have a degree (number of links) of d.!* The probability that

any given node ¢ has exactly d links is

n—1

; pt(1—p) e (1.3)

Note that even though links are formed independently, there will be some correlation
in the degrees of various nodes, which will affect the distribution of nodes that have
a given degree. For instance, if n = 2, then it must be that both nodes have the
same degree: the network either consists of two nodes of degree 0, or two nodes of
degree 1. As n becomes large, however, the correlation of degree between any two
nodes vanishes, as the possible link between them is only one out of the n — 1 that
each might have. Thus, as n becomes large, the fraction of nodes that have d links will
approach the expression in (1.3). For large n and small p, this binomial expression is
approximated by a Poisson distribution, so that the fraction of nodes that have d links

is approximately!?
e "V ((n — 1)p)*
d!

12Note here that there is a distinction between the probability of some specific network forming

(1.4)

and some network architecture forming. With four nodes the chance that a network forms with a link
between nodes 1 and 2 and a link between nodes 2 and 3 is p?(1 — p)*. However, the chance that a
network forms which contains two links involving three nodes is 12 p?(1 —p)?, as there are 12 different
networks we could draw that have this same shape. The difference between these counts is whether

we pay attention to the labels of the nodes in various positions.
13The degree distribution of a network is often given for an observed network, and thus is a frequency

distribution. Here, when dealing with a random network, one can talk about the degree distribution
before the network has actually formed, and so we refer to probabilities of nodes having given degrees,

rather than observed frequencies of nodes with given degrees.

14To see this, note that for large n and small p, (1 —p)"~1-¢ yn—l

is roughly (1 —p . Then, we write

1-pt=(1- %)”*1 which, if (n — 1)p is either constant or shrinking (if we allow p to vary

) is roughly

-1
with n), is approximately e~ (»~DP_ Then for fixed d, large n, and small p, ( "

(n=1)?
-
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Figure 1.4: A Randomly Generated Network with Probability .02 on each Link

Given the approximation of the degree distribution by a Poisson distribution, the
class of random graphs where each link is formed independently with an identical
probability is often referred to as the class of Poisson random networks, and I will use
this terminology in what follows.

To provide a better feeling for the structure of such networks, I generated a couple
of Poisson random networks for different p’s. I chose n = 50 nodes as this produces a
network that is easy to visualize. Let us start with an expected degree of 1 for each
node. This is equivalent to setting p at roughly .02. Figure 1.4 pictures a network
generated with these parameters.!> This network exhibits a number of features that
are common to this range of p and n. First, we should expect some isolated nodes.
Based on the approximation of a Poisson distribution (1.4) with n = 50 and p = .02, we
should expect about 37.5 percent of the nodes to be isolated (i.e., have d = 0), which
is roughly 18 or 19 nodes. There are 19 isolated nodes in the network, by chance.
Figure 1.5 compares the realized frequency distribution of degrees with the Poisson

approximation.

15 The networks in Figures 1.4 and 1.6 were generated and drawn using the random network generator
in UCINET [90]. The nodes are arranged to make the links as easy as possible to distinguish.
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Figure 1.5: Frequency Distribution of a Randomly Generated Network and the Poisson
Approximation for a Probability of .02 on each Link
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The distributions match fairly closely. The network also has some other features
that are common to random networks with p’s and n’s in this relative range. In graph
theoretical terms, the network is a “forest,” or a collection of trees. That is, there are
no cycles in the network (where a cycle is a sequence of links that lead from one node
back to itself, as described in more detail in Section 2.1.3). The chance of there being
a cycle is relatively low with such a small link probability. In addition, there are six
components (maximal subnetworks such that every pair of nodes in the subnetwork is
connected by a path or sequence of links) that involve more than one node. And one
of the components is much larger than the others: involving 16 nodes, while the next
largest component only has 5 nodes in it. As we shall discuss shortly, this is to be

expected.

Next, let us start with the same number of nodes, but increase the probability of a
link forming to p = log(50)/50 = .078, which is roughly the threshold where isolated
nodes should start to disappear. (This threshold is discussed in more detail in Chapter
4.) Indeed, based on the approximation of a Poisson distribution (1.4) with n = 50
and p = .08, we should expect about 2 percent of the nodes to be isolated (with degree
0), or roughly 1 node out of 50. This is exactly what we see in the realized network in
Figure 1.6 (again, by chance). With the exception of the single isolated node, the rest
of the network is connected into one component.

As shown in Figure 1.7, the realized frequency distribution of degrees is again
similar to the Poisson approximation, although, as one should expect at this level of

randomness, not a perfect match.

The degree distribution tells us a great deal about a network’s structure. Let us
examine this in more detail, as it provides a first illustration of the concept of a phase
transition, where the structure of a random network changes as we change the formation

process.

Consider what fraction of nodes are completely isolated; i.e., what fraction of nodes
have degree d = 0?7 From (1.4) it follows that this is approximated by e~ "~V for
large networks, provided the average degree (n — 1)p is not too large. To get a more
precise expression, let us examine the threshold where this fraction is just such that
we expect to have one isolated node on average. That is where e~ (*~1P = % Solving
this yields p(n — 1) = log(n), or right at the point where average degree (n — 1)p is

log(n). Indeed, this is a threshold for a “phase transition,” as we shall see in Section
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Figure 1.6: A Randomly Generated Network with Probability .08 of each Link

4.2.2. If the average degree is substantially above log(n), then probability of having
any isolated nodes goes to 0, while if the average degree is substantially below log(n),
then the probability of having at least some isolated nodes goes to 1. In fact, as we
shall see in Theorem 4.2.1, this is the threshold such that if the average degree is
significantly above this level then the network is path-connected with a probability
converging to 1 as n grows (so that any node can be reached from any other via a path
in the network), while below this level the network will consist of multiple components
with a probability going to 1.

Other properties of random networks are examined in much more detail in Chapter
4. While it is clear that completely random networks are not always a good approxi-
mation for real social and economic networks, the analysis above (and in Chapter 4)
shows us that much can be deduced in such models; and that there are some basic
patterns and structures that we will see emerging more generally. As we build more

realistic models, similar analyses can be conducted.

www.manaraa.com



1.2. A SET OF EXAMPLES: 31

Degree Distribution p=08

02

—— Realized Frequency
—=— Poisson Appraximation

s

Pl
7

%/

I <

Degree

Figure 1.7: Frequency Distribution of a Randomly Generated Network and the Poisson
Approximation for a Probability of .08 on each Link
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Figure 1.8: The utilities to the players in a three-link four-player network in the sym-

metric connections model.

1.2.4 The Symmetric Connections Model

Although random network formation models give us some insight into the sorts of
characteristics that networks might have, and exhibit some of the features that we
see in the Add Health social network data, it does not provide as much insight into
the Florentine marriage network. There, marriages were carefully arranged. The last
example comes from the game-theoretic, economics literature and provides a basis for
the analysis of networks that are formed when links are chosen by the agents in the
network. Through this example, we can begin to look at the questions about which
networks might be best for a society and which networks might arise if the players have
discretion in choosing their links.

It is a simple model of social connections that was developed by Jackson and Wolin-
sky [345]. In this model, links represent social relationships, for instance friendships,
between players. These relationships offer benefits in terms of favors, information, etc.,
and also involve some costs. Moreover, players also benefit from indirect relationships.
A “friend of a friend” also results in some indirect benefits, although of a lesser value
than the direct benefits that come from a “friend.” The same is true of “friends of
a friend of a friend,” and so forth. The benefit deteriorates with the “distance” of
the relationship. This is represented by a factor ¢ that lies between 0 and 1, which
indicates the benefit from a direct relationship and is raised to higher powers for more
distant relationships. For instance, in the network where player 1 is linked to 2, 2 is
linked to 3, and 3 is linked to 4: player 1 gets a benefit of § from the direct connection
with player 2, an indirect benefit of 6 from the indirect connection with player 3, and
an indirect benefit of §* from the indirect connection with player 4. The payoffs to this
four players in a three-link network is pictured in Figure 1.8.

For 0 < 1 this leads to a lower benefit from an indirect connection than a direct

one. Players only pay costs, however, for maintaining their direct relationships.!®

16Tn the most general version of the connections model the benefits and costs may be relation

specific, and so are indexed by ¢j. One interesting variation is where the cost structure is specific

www.manaraa.com



1.2. A SET OF EXAMPLES: 33

Given a network ¢,!” the net utility or payoff u;(g) that player i receives from a
network ¢ is the sum of benefits that the player gets for his or her direct and indirect
connections to other players less the cost of maintaining his or her links. In particular,
it is

u(g) = > 59 — di(g)e
j#i: i and j are path—connected in g
where /;;(g) is the number of links in the shortest path between i and j, d;(g) is the
number of links that ¢ has (i’s degree), and ¢ > 0 is the cost for a player of maintaining
a link.

The highly stylized nature of the connections model allows us to begin to answer
questions regarding which networks are “best” (most “efficient”) from society’s point
of view, as well as which networks are likely to form when self-interested players choose
their own links.

Let us define a network to be efficient if it maximizes the total utility to all players
in the society. That is, g is efficient if it maximizes Y, u;(g).'®

It is clear that if costs are very low, it will be efficient to include all links in the
network. In particular, if ¢ < § — 6%, then adding a link between any two agents i
and j will always increase total welfare. This follows because they are each getting at
most 62 of value from having any sort of indirect connection between them, and since
8% < § — ¢, the extra value of a direct connection between them increases their utilities
(and might also increase, and cannot decrease, the utilities of other agents).

When the cost rises above this level, so that ¢ > § — 6% but ¢ is not too high (see
Exercise 1.3), it turns out that the unique efficient network structure is to have all
players arranged in a “star” network. That is, there should be some central player who
is connected to each other player, so that one player has n—1 links and each of the other
players has 1 link. The idea behind why a star among all players is the unique efficient
structure in this middle cost range, is as follows. A star involves the minimum number
of links needed to ensure that all pairs of players are path connected, and it has each

player within two links of every other player. The intuition behind this dominating

to some geography, so that linking with a given player depends on their physical proximity. That

variation has been studied by Johnson and Gilles [351] and is discussed in Exercise 6.13.
ITFor complete definitions, see Chapter 2. For now, all that is important is that this tells us which

pairs of players are linked.
18This is just one of many possible measures of efficiency and societal welfare, which is a well-

studied subject in philosophy and economics. How we measure efficiency has important consequences

in network analysis and is discussed in more detail in Chapter 6.
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Figure 1.9: The Gain in Total Utility from Changing a “Line” into a “Star”.

other structures is then easy to see. Suppose for instance we have a network with links
between 1 and 2, 2 and 3, and 3 and 4. If we change the link between 3 and 4 to
be one between 2 and 4, we end up with a star network. The star network has the
same number of links as our starting network, and thus the same cost and payoffs from
direct connections. However, now all agents are within two links of each other whereas
before some of the indirect connections involved paths of length three. This is pictured
in Figure 1.9.

As we shall see, this is the key to the set of efficient networks having a remarkably
simple characterization: either costs are so low that it makes sense to add links, and
then it makes sense to add all links, or costs are so high that no links make sense, or
costs are in a middle range and the unique efficient architecture is a star network. This
characterization of efficient networks being either stars, empty or complete, actually
holds for a fairly general class of models where utilities depend on path length and

decay with distance, as is shown in detail in Section 6.3.

We can now compare the efficient networks with those that arise if agents form links
in a self-interested manner. To capture how agents will act, let us consider a simple
equilibrium concept introduced in Jackson and Wolinsky [345]. This concept is called
“pairwise stability” and involves checking two things about a network: first, no agent
would raise his or her payoff by deleting some link that he or she are directly involved
in; and second, no two agents would both benefit by adding a link between themselves.
This stability notion captures the idea that links are bilateral relationships and require

the consent of both individuals. If some individual would benefit by terminating some
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relationship that he or she is involved in, then that link would be deleted; while if two
individuals would each benefit by forming a new relationship, then that link would be
added.

In the case where costs are very low ¢ < 6 — 62, as we have already argued, the direct
benefit to the agents from adding or maintaining a link is positive, even if they are
already indirectly connected. Thus, in that case the unique pairwise stable network
will be the efficient one which is the complete network. The more interesting case

comes when ¢ > § — 6%, but ¢ is not too high, so that the star is the efficient network.

If 6 > ¢ > §— 6%, then a star network (that involves all agents) will be both pairwise
stable and efficient. To see this we need only check that no player wants to delete a
link, and no two agents both want to add a link. The marginal benefit to the center
player from any given link already in the network is  —c¢ > 0, and the marginal benefit
to a peripheral player is § + (n — 2)6® — ¢ > 0. Thus, neither player wants to delete a
link. Adding a link between two peripheral players only shortens the distance between
them from two links to one, and does not shorten any other paths - and since ¢ > § —¢§*
adding such a link would not benefit either of the players. While the star is pairwise
stable, in this cost range so are some other networks. For example if ¢ < § — 6°, then
four players connected in a “circle” would also be pairwise stable. In fact, as we shall

see in Section 6.3, many other (inefficient) networks can be pairwise stable.

If ¢ > 6, then the efficient (star) network will not be pairwise stable, as the center
player gets only a marginal benefit of 6 — ¢ < 0 from any of the links. This tells us that
in this cost range there cannot exist any pairwise stable networks where there is some
player who just has one link, as the other player involved in that link would benefit
by severing it. For various values of ¢ > ¢ there will exist nonempty pairwise stable
networks, but they will not be star networks: as just argued, they must be such that

each player has at least two links.

This model makes it clear that there will be situations where individual incentives
are not aligned with overall societal benefits. While this connections model is highly
stylized, it still captures some basic insights about the payoffs from networked relation-
ships and it shows that we can model the incentives that underlie network formation
and see when resulting networks are efficient.

This model also raises some interesting questions that we will examine further in
the chapters that follow. How does the network that forms depend on the payoffs to the
players for different networks? What are alternative ways of predicting which networks

will form? What if players can bargain when they form links, so that the payoffs are
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endogenous to the network formation process (as is true in many market and partner-
ship applications)? Uow does the relationship between the efficient networks and those
which form based on individual incentives depend on the underlying application and

payoff structure?

1.3 Exercises

EXERCISE 1.1 A Weighted Betweenness Measure

Consider the following variation on the betweenness measure in (1.1). Any given
shortest path between two families is weighted by inverse of the number of intermediate
nodes on that path. For instance, the shortest path between the Ridolfi and Albizzi
involves two links and the Medici are the only family that lies between them on that
path. In contrast, between the Ridolfi and the Ginori the shortest path is three links
and there are two families, the Medici and Albizzi, that lie between the Ridolfi and
Ginori on that path.

More specifically, let ¢;; be the length of the shortest path between nodes i and j
and let Wi (ij) = Pi(ij)/(€;; — 1), (setting ¢;; = oo and Wy (ij) = 0 if ¢ and j are not
connected). Then the weighted betweenness measure for a given node k be defined by

Wie(ij)/ P(ij)
WBr= Y RO (1.5)

ijiiFEgk¢{i.g}
where we take the convention that V}/,’“(ZJ)) = 0/0 = 0 if there are no paths connecting i
and j.
Show that

e W By > 0 if and only if £ has more than one link in a network and some of k’s

neighbors are not linked to each other,

e WB, = 1 for the center node in a star network that includes all nodes (with
n > 3), and

e W B, < 1 unless k is the center node in a star network that contains all nodes.

Calculate this measure for the the network pictured in Figure 1.10 for nodes 4 and

Contrast this measure with the betweenness measure in (1.1).
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Figure 1.10: Differences in Betweenness measures.

EXERCISE 1.2 Random networks

Fix the probability of any given link forming in a Poisson random network to be p
where 1 > p > 0. Fix some arbitrary network g on k nodes. Now, consider a sequence
of random networks indexed by the number of nodes n, as n — oco. Show that the
probability that a copy of the k node network ¢ is a subnetwork of the random network
on the n nodes goes to 1 as n goes to infinity.

[Hint: partition the n nodes into as many separate groups of k nodes as possible
(with some leftover nodes) and consider the subnetworks that end up forming on each
of these groups. Using the expression in (1.2) and the independence of link formation,
show that the probability that the none of these match the desired network goes to 0

as n grows.|

EXERCISE 1.3 The Upper Bound for a Star to be Efficient

Find the maximum level of cost in terms of 4 and n, for which a star is an efficient

network in the symmetric connections model.
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EXERCISE 1.4 The Connections Model with Low Decay*

Consider the symmetric connections model in a setting where 1 > § > ¢ > 0.

Show that if ¢ is close enough to 1, so that there is “low decay” and 6" is nearly
0, then in every pairwise stable network every pair of players have some path between
them and that there are at most n — 1 total links in the network.

In a case where 0 is close enough to 1 so that any network that has n — 1 links and
connects all agents is pairwise stable, what fraction of the pairwise stable networks are
also efficient networks?

How does that fraction behave as n grows (adjusting 0 to be high enough as n

grows)?

EXERCISE 1.5 Homophily and Balance Across Groups

Consider a society of two groups, where the set N; comprises the members of
group 1 and the set N, comprises the members of group 2, with cardinalities n; and
ng, respectively. Suppose that n; > ny. For an individual 7, let d; be i’s degree (total
number of friends) and let s; denote the number of friends that ¢ has that are within own

EiENk Si

group. Let %y, denote a simple homophily index for group k, defined by hy = 5 o
1EN)

Show that if h; and hy are both above 0 and below 1, and the average degree in group
1 is at least as high as the average degree in group 2, then h; > hy. What are h,
and hs in the case where friendships are formed in percentages that correspond to the

relevant populations.
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